
WEIB-5

A QUASI-STATIC MODIFICATION OF TLM AT KNIFE EDGE

AND 90° WEDGE SINGULARITIES

Lucia Cascio, Giampaolo Tardioli, Tullio Rozzi*, and Wolfgang .J.R. Hoefer

NSERC/MPR Teltech Research Chair in RF Engineering. Department of Electrical and Computer Engineering,

University of Victoria, Victoria, B.C. V8W3P6, CANADA

*Dipartimento di Elettronica ed Automatic, University’ di Ancona, Ancona, 1-60131, ITALY

ABSTRACT

A common drawback of numerical techniques

such as TLM and FDTD resides in the difficulty
to accurately describe the electromagnetic field
in structures with singularities.

In this paper a local modification of the 2D-

TLM algorithm for the nodes surrounding a

knife edge and a 90° wedge is proposed. A

quasi-static approximation of the field is used to

derive an equivalent circuit of the edge.

The proposed corner correction is compared

with the uncorrected TLM results and with data

available in the literature, revealing a marked

enhancement in the accuracy and convergence of

the results.

INTRODUCTION

The TLM method [1] is widely regarded as an
efficient and flexible technique for the analysis

of a large class of electromagnetic problems.

One of the main limitations of this and other

numerical techniques is that the spatial discreti-

zation fails to accurately describe the singulari-

ties of the electromagnetic field, which occur for

example close to sharp edges.

Unless a very fine discretization is used, the
singular behavior around the corner is poorly
represented and the frequency domain character-

istics of the structure will typically be shifted.
This error is very often unacceptable when we

are dealing with narrowband structures such as
filters.

The accuracy of the discretized moclel can be

improved by introducing a better description of

the field singularity, through local modification

of the algorithm,

An approach based cm the local modification

of the standard TLM method to account for the

energy stored around the edge has been proposed

in [2]. The nodes surrounding the corner are

loaded with stubs with optimized characteristics.

In this paper a new approach based on the

quasi-static approximation of the Green’s func-

tions for an infinite conductive wedge is pro-

posed. The field distribution around a corner is
represented in terms of an equivalent circuit

which can be implemented easily and efficiently

in TLM. The accuracy of the proposed method is

compared to that of the standard 2D-TLM algo-

rithm by means of test structures for which the

results are also available in the literature.

THEORY

Consider a current filament adjacent and par-
allel to a conducting wedge (Fig. 1) where

(p’,@’) indicates the source point, and (p,@) the
field point. The excitation is an impulsive cur-

rent of strength I.

In this two-dimensional problem the electric
field component EZ in cylindrical coordinates
can be expressed as a series of trigononnetric and

Bessel functions [3]:

EZ(p, ~) = ~(p,+;p’>~’)z (1)
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The expressions in (2) present a complex fre-

quency dependence, the variable k being a func-

tion of O. Using approximations for the Bessel
and Hankel functions for small values of the

argument [4], (2) can be considerably simplified

leading to a quasi-static solution given by [5]:

APPLICATION TO THE TLM MESH

The quasi-static expression for the electric

field described in (3) represents the basis for the

determination of an equivalent circuit describing

the field around the edge.

In order to reduce the number of ports sur-

rounding the edge, the conducting boundaries

have been placed on the nodes of the TLM mesh.

In the case of a knife edge (et = 0°) a three-port

equivalent circuit is required to characterize the

edge behavior, while in the case of a 90° wedge

(et = 45°) a two-port equivalent circuit is suffi-
cient (Fig. 2).

Since the voltages and currents at the ports

are related to the electric field EZ and to the cur-
rent density JZ (4), we can describe the equiva-

lent circuit by a Z matrix representation.

v,+ E, (pi, (ji)

I(pi, ($i) I(p,, +,)
zi+-Jz(pt, @,) =– Znp, =-

(4)

1 nAl

The impedance elements depend on the

Green’s function as reported in (5):

.zij = +cAIG (p,, @i;P’j, @’j) = ~ (pi, $i; P’j, @’j) (5)

where i. and j indicate the number of the port in

the circuit. The equivalent circuit is composed

by inductive elements.

A more general definition for the impedances

is given by:

1
Z,j = —

H
~ (S; S.) dsdso

Wiw, w ~
IJ

(6)

where G(s;sO) represents the Green’s function

determined in (5), and Wi, W~ are the domains of

integration for the source variables and for the

field variables. The adopted domains of integra-

tion are 90° circular sectors (Fig. 3).

Due to the reciprocity of the Green’s function

and to the geometrical symmetry of the problem
there are only four distinct elements Zij for the

knife edge equivalent circuit, and only two for

the 90° wedge.

DISCRETIZATION PROCESS

In order to realize the equivalent circuit in the

TLM mesh, we need to determine the relation

between the incident and reflected voltages at

the ports as a function of the Z matrix elements

(6). Due to the quasi-static approximation, the
voltages at the ports of the equivalent circuits

depend only linearly on the frequency.

Using a bilinear discretization scheme [6] to
approximate the frequency dependence, we

obtain the recursive formulation (7) which

describes the corner condition in the TLM pro-
cess.

-1

z= (;t Yo[zl - [11) (; YOIZI + [11) ‘
(7)

.(7; +~_J-r; _l

In this expression YO is the TLM link line

admittance, and ~kr and ~ki are the vectors of the
voltages incident and reflected at the terminals

of the equivalent circuit at the time step k.
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RESULTS

The proposed method has been applied to

analyze discontinuities in the H plane of a rect-

angular waveguide, for both types of discontinu-

ities.

To validate the model of a knife edge, a sym-

metrical inductive iris with aperture d=3.556

mm in a WR(28) waveguide has been analyzed
both with the corner modification and the regular

TLM algorithm, and the results have been com-

pared with Marcuvitz’s [7] formulae. The scat-
tering parameters obtained for different

discretizations are shown in Fig. 4-a.

Note that the corner modification improves

considerably the accuracy of the TLM algorithm

(Fig. 4-b) even when a very coarse mesh is used.

To further test the efficiency of the proposed

method, an iris-coupled waveguide bandpass fil-

ter (Fig. 5), with center frequency of 33.18 GHz

and bandwidth of 0.94 GHz, has been analyzed.

Also in this case the corner correction results in

a much faster convergence to Marcuvitz’s curves

as compared with the standard TLM algorithm

(Fig. 6).

To verify the model the 90° wedge, a sym-
metrical thick iris has been examined. Compari-

son with the uncorrected TLM algorithm and

other techniques has shown that in this case the

correction is practically ineffective, since in this

case the standard TLM method provides good

accuracy even with coarse discretizations.

CONCLUSION

In this paper we have derived an equivalent

circuit for knife edges and 90° wedges, based on
a quasi-static formulation of the field around the

edge, and we have introduced it in the 2D-TLM

algorithm.

The proposed corner correction has been

compared with the regular TLM method and
with data available in the literature, and has

yielded a noticeable improvement in the accu-

racy as well as in the convergence of the results
for knife edges, while in the case of 90° wedges

the standard TLM algorithm has proved to be

sufficiently accurate.

The better description of the singular behav-

ior of the field around the edge allows consider-

able savings in computer processing time and

memory requirements when comparecl to mesh

grading, since the desired accuracy can be

achieved by using a coarser lattice.

An immediate extension of this method is its
application to problems involving dielectric

interfaces and sharp metallic boundaries, such as

microstrips.
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Fig. 1 Conducting wedge
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Fig. 3 Domain of integration for the determination of Zv
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Fig. 4 S-parameters for an inductive iris in WR(28)

waveguide: a) TLM with comer correction, b) TLM

without corner correction

Fig. 2 Knije edge and 90° wedge position in the TLM mesh
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Fig. 5 Top view of the iris coupled bandpass filter in

WR(28) waveguide

(a)

-5- — Marcuvitz

-10 -

--- Al=aJ9(j

S-25

Frequency (GHz)

(b)

-55 I I
31 31.5 32 32.5 S3 33.5 34 345 35 35,5 36

Frequency (GHz)

Fig. 6 Iris coupled bandpass jilter in WR(28) waveguide:

a) TLM with comer correction, b) TLM without

corner correction
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